{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 1: Greenhouse Gase - The prime suspect" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Long-Term Development of CO2 and CH4 Concentrations" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Generation of plots based on [the relevant Climate Indicators' report](https://climate.copernicus.eu/climate-indicators/greenhouse-gas-concentrations)." ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "The ongoing climate change and the subsequent incease of earth's temperature is a hot topic in recent years; a topic that has lately expanded from the purely scientific communities and now touches almost all aspects of our lives. There is much said about the role that the GreenHouse Gases (GHG) play in this climatic crisis. Let's follow this tutorial and find out if and how the concentrations of two key GHG (carbon dioxide - CO2, and methane - CH4) changed in the last decades.\n", "\n", "In this tutorial we will:\n", "1. Search, download, and view data freely available in [Climate Data Store](https://cds.climate.copernicus.eu/cdsapp#!/home).\n", "2. Calculate global and regional monthly timeseries.\n", "3. Mask the data and use spatiotemporal subsets for plotting.\n", "3. View time series and analyse trends.\n", "4. Create gridded plots and analyse spatial variations." ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "
Run the tutorial via free cloud platforms: | \n", "\n",
" | \n",
" \n",
" | \n",
" \n",
" | \n",
"
---|
<xarray.Dataset>\n", "Dimensions: (time: 228, bnds: 2, lat: 36, lon: 72, pressure: 10)\n", "Coordinates:\n", " * time (time) datetime64[ns] 2003-01-16T12:00:00 ... 20...\n", " * lat (lat) float64 -87.5 -82.5 -77.5 ... 77.5 82.5 87.5\n", " * lon (lon) float64 -177.5 -172.5 -167.5 ... 172.5 177.5\n", "Dimensions without coordinates: bnds, pressure\n", "Data variables:\n", " time_bnds (time, bnds) datetime64[ns] ...\n", " lat_bnds (lat, bnds) float64 ...\n", " lon_bnds (lon, bnds) float64 ...\n", " pre (pressure) float64 ...\n", " pre_bnds (pressure, bnds) float64 ...\n", " land_fraction (lat, lon) float64 ...\n", " xco2 (time, lat, lon) float32 ...\n", " xco2_nobs (time, lat, lon) float64 ...\n", " xco2_stderr (time, lat, lon) float32 ...\n", " xco2_stddev (time, lat, lon) float32 ...\n", " column_averaging_kernel (time, pressure, lat, lon) float32 ...\n", " vmr_profile_co2_apriori (time, pressure, lat, lon) float32 ...\n", "Attributes: (12/28)\n", " activity_id: obs4MIPs\n", " comment: Since long time, climate modellers use ensemble a...\n", " contact: Maximilian Reuter (maximilian.reuter@iup.physik.u...\n", " Conventions: CF-1.7 ODS-2.1\n", " creation_date: 2022-07-10T09:25:22Z\n", " data_specs_version: 2.1.0\n", " ... ...\n", " source_version_number: v4.4\n", " title: C3S XCO2 v4.4\n", " tracking_id: ca42b88b-c774-4a16-9ad8-a49f9a4839fd\n", " variable_id: xco2\n", " variant_info: Best Estimate\n", " variant_label: BE
<xarray.Dataset>\n", "Dimensions: (time: 228, lat: 36, lon: 72)\n", "Coordinates:\n", " * time (time) datetime64[ns] 2003-01-16T12:00:00 ... 2021-12-16T12:00:00\n", " * lat (lat) float64 -87.5 -82.5 -77.5 -72.5 -67.5 ... 72.5 77.5 82.5 87.5\n", " * lon (lon) float64 -177.5 -172.5 -167.5 -162.5 ... 167.5 172.5 177.5\n", "Data variables:\n", " xco2 (time, lat, lon) float32 nan nan nan nan nan ... nan nan nan nan\n", " xch4 (time, lat, lon) float32 nan nan nan nan nan ... nan nan nan nan\n", "Attributes:\n", " standard_name: dry_atmosphere_mole_fraction_of_carbon_dioxide\n", " long_name: column-average dry-air mole fraction of atmospheric carbo...\n", " units: 1\n", " cell_methods: time: mean\n", " fill_value: 1e+20\n", " comment: Satellite retrieved column-average dry-air mole fraction ...
<xarray.DataArray 'time' (time: 228)>\n", "array(['2003-01-01T00:00:00.000000000', '2003-02-01T00:00:00.000000000',\n", " '2003-03-01T00:00:00.000000000', ..., '2021-10-01T00:00:00.000000000',\n", " '2021-11-01T00:00:00.000000000', '2021-12-01T00:00:00.000000000'],\n", " dtype='datetime64[ns]')\n", "Coordinates:\n", " * time (time) datetime64[ns] 2003-01-01 2003-02-01 ... 2021-12-01
<xarray.DataArray 'lat' (lat: 36)>\n", "array([0.04361939, 0.13052619, 0.21643961, 0.3007058 , 0.38268343,\n", " 0.46174861, 0.53729961, 0.60876143, 0.67559021, 0.73727734,\n", " 0.79335334, 0.84339145, 0.88701083, 0.92387953, 0.95371695,\n", " 0.97629601, 0.99144486, 0.99904822, 0.99904822, 0.99144486,\n", " 0.97629601, 0.95371695, 0.92387953, 0.88701083, 0.84339145,\n", " 0.79335334, 0.73727734, 0.67559021, 0.60876143, 0.53729961,\n", " 0.46174861, 0.38268343, 0.3007058 , 0.21643961, 0.13052619,\n", " 0.04361939])\n", "Coordinates:\n", " * lat (lat) float64 -87.5 -82.5 -77.5 -72.5 -67.5 ... 72.5 77.5 82.5 87.5\n", "Attributes:\n", " standard_name: latitude\n", " long_name: latitude\n", " units: degrees_north\n", " axis: Y\n", " comment: latitude center
<xarray.Dataset>\n", "Dimensions: (region: 3, type: 2, time: 228)\n", "Coordinates:\n", " * time (time) datetime64[ns] 2003-01-01 2003-02-01 ... 2021-12-01\n", " * type (type) <U8 'raw' 'smoothed'\n", " * region (region) <U19 'Global' 'Northern Hemishpere' 'Southern Hemisphere'\n", "Data variables:\n", " xco2 (region, type, time) float64 0.0003758 0.0003765 ... 0.000414\n", " xch4 (region, type, time) float64 1.749e-06 1.742e-06 ... 1.856e-06
<xarray.Dataset>\n", "Dimensions: (region: 3, time: 228)\n", "Coordinates:\n", " * time (time) datetime64[ns] 2003-01-01 2003-02-01 ... 2021-12-01\n", " * region (region) <U19 'Global' 'Northern Hemishpere' 'Southern Hemisphere'\n", "Data variables:\n", " xco2 (region, time) float64 nan nan nan nan nan ... nan nan nan nan nan\n", " xch4 (region, time) float64 nan nan nan nan nan ... nan nan nan nan nan
<xarray.Dataset>\n", "Dimensions: (region: 3, year: 19)\n", "Coordinates:\n", " * region (region) <U19 'Global' 'Northern Hemishpere' 'Southern Hemisphere'\n", " * year (year) int64 2003 2004 2005 2006 2007 ... 2017 2018 2019 2020 2021\n", "Data variables:\n", " xco2 (region, year) float64 1.311e-06 1.584e-06 ... 1.898e-06 2.113e-06\n", " xch4 (region, year) float64 1.91e-09 -1.203e-09 ... 1.441e-08 1.605e-08" ], "text/plain": [ "
<xarray.Dataset>\n", "Dimensions: (region: 3, time: 228)\n", "Coordinates:\n", " * time (time) datetime64[ns] 2003-01-01 2003-02-01 ... 2021-12-01\n", " * region (region) <U19 'Global' 'Northern Hemishpere' 'Southern Hemisphere'\n", "Data variables:\n", " xco2 (region, time) float64 nan nan 7.448e-07 ... 4.668e-07 nan\n", " xch4 (region, time) float64 nan nan 9.249e-09 ... 9.418e-09 nan
<xarray.DataArray (region: 3, year: 19)>\n", "array([[0.5 , 0.28, 0.27, 0.27, 0.25, 0.28, 0.31, 0.3 , 0.32, 0.31, 0.32,\n", " 0.31, 0.33, 0.3 , 0.3 , 0.3 , 0.31, 0.31, 0.47],\n", " [0.45, 0.26, 0.24, 0.24, 0.23, 0.25, 0.28, 0.27, 0.28, 0.28, 0.28,\n", " 0.28, 0.3 , 0.27, 0.26, 0.26, 0.27, 0.27, 0.42],\n", " [0.36, 0.2 , 0.19, 0.2 , 0.2 , 0.22, 0.21, 0.21, 0.2 , 0.2 , 0.2 ,\n", " 0.2 , 0.22, 0.22, 0.2 , 0.19, 0.23, 0.22, 0.33]])\n", "Coordinates:\n", " ghg <U4 'xco2'\n", " * region (region) <U19 'Global' 'Northern Hemishpere' 'Southern Hemisphere'\n", " * year (year) int64 2003 2004 2005 2006 2007 ... 2017 2018 2019 2020 2021" ], "text/plain": [ "